Product Categories
Product Tags
choice of tools for CNC turning small precision parts
The commonly used CNC turning tools are generally divided into three categories: forming tools, pointed tools, arc tools and three types. Forming turning tools are also called prototype turning tools. The contour shape of the processed parts is completely determined by the shape and size of the turning tool blade. In CNC turning processing, common forming turning tools include small radius arc turning tools, non-rectangular turning tools and thread tools.
Category: CNC turning services
Tag: CNC turning
How to choose tools for CNC turning?
The commonly used CNC turning tools are generally divided into three categories: forming tools, pointed tools, arc tools and three types. Forming turning tools are also called prototype turning tools. The contour shape of the processed parts is completely determined by the shape and size of the turning tool blade. In CNC turning processing, common forming turning tools include small radius arc turning tools, non-rectangular turning tools and thread tools. In CNC machining, the forming turning tool should be used as little as possible or not. The pointed turning tool is a turning tool characterized by a straight cutting edge. The tip of this type of turning tool is composed of linear main and secondary cutting edges. Such as 900 type internal and external turning tools, left and right face turning tools, grooving (cutting) turning tools, and various external and internal turning tools with a small tip chamfer. The method of selecting geometric parameters (mainly geometric angle) of the pointed turning tool is basically the same as that of ordinary turning. However, the characteristics of CNC machining (such as machining route, machining interference, etc.) should be fully considered, and the strength of the tool tip itself should be taken into account.
The second is the arc-shaped turning tool. The arc-shaped turning tool is a turning tool characterized by an arc-shaped cutting edge with a small roundness or line profile error. Each point of the arc edge of the turning tool is the tip of the arc-shaped turning tool. Accordingly, the tool position point is not on the arc, but on the center of the arc. The arc-shaped turning tool can be used for turning inner and outer surfaces, and is especially suitable for turning various smooth connection (concave) forming surfaces. When choosing the arc radius of the turning tool, consider that the arc radius of the cutting edge of the two-point turning tool should be less than or equal to the minimum radius of curvature on the concave contour of the part to avoid machining interference. The radius should not be too small, otherwise it will not only be difficult to manufacture, but also the turning tool will be damaged due to weak tool tip strength or poor heat dissipation capacity of the tool body.
The amount of CNC cutting
In NC programming, the programmer must determine the cutting amount of each process and write it in the program in the form of instructions. Cutting parameters include spindle speed, back-cutting amount and feed speed. For different processing methods, different cutting parameters need to be selected.
The selection principle of cutting amount is:
Ensure the machining accuracy and surface roughness of the parts, give full play to the cutting performance of the tool, ensure reasonable tool durability, and give full play to the performance of the machine tool to maximize productivity and reduce costs.
1. Determine the spindle speed
The spindle speed should be selected according to the allowable cutting speed and the diameter of the workpiece (or tool).
The calculation formula is: n=1000 v/7 1D
Where: v is the cutting speed, the unit is m/m movement, which is determined by the durability of the tool; n one spindle speed, the unit is r/min, D is the diameter of the workpiece or the tool diameter in mm. For the calculated spindle speed n, the speed that the machine tool has or is close should be selected at last.
2. Determine the feed rate
Feed speed is an important parameter in the cutting parameters of CNC machine tools, which is mainly selected according to the machining accuracy and surface roughness requirements of the parts and the material properties of the tools and workpieces. The maximum feed rate is limited by the rigidity of the machine tool and the performance of the feed system. The principle of determining the feed rate: When the quality requirement of the workpiece can be guaranteed, in order to improve the production efficiency, a higher feed speed can be selected. Generally selected in the range of 100-200mm/min; When cutting, processing deep holes or processing with high-speed steel tools, a lower feed rate should be selected, generally in the range of 20-50mm/min; When the machining accuracy and surface roughness are required to be high, the feed speed should be smaller, generally in the range of 20-50mm/min; When the tool is idling, especially for long-distance "zero return", the maximum feed rate set by the CNC system of the machine tool can be set.
3. Determine the depth of cut
The depth of cut is determined by the rigidity of the machine tool, workpiece and tool. Under the condition that the rigidity allows, the amount of back-grabbing should be equal to the machining allowance of the workpiece as much as possible, which can reduce the number of passes and improve production efficiency. In order to ensure the quality of the processed surface, a small amount of finishing allowance can be left, generally 0.2-0.5mm. In short, the specific value of cutting parameters should be determined by analogy based on the performance of the machine tool, related manuals and combined with actual experience.
At the same time, the spindle speed, cutting depth and feed speed can be adapted to each other to form the best cutting parameters.
Cutting amount is not only an important parameter that must be determined before machine tool adjustment, but also whether its value is reasonable or not has a very important influence on processing quality, processing efficiency, and production cost. By "reasonable" amount refers to take advantage of cutting tools and cutting tool power performance (power, torque), to ensure the quality of the premise, to achieve high productivity and low cost of the cutting amount of the processing.
Contact Us
Waiting for your email, we will reply you within 12 hours with valuable information you needed.
RELATED PRODUCTS
Lathe CNC Machining metal small, large Components Price
Longer size computer lathe machining parts
This is a long CNC machined part. Because the product is too large, only a partial close-up was taken, and the attached complete picture is enlarged.
Specification on the left picture 25MM*300MM
Both ends processing, middle polishing
Product material on the left: aluminum
Machinable materials: aluminum, iron, stainless steel, copper, etc.
OEM 304 Stainless Turning Precision Component
Our company produces SUS303, 304, SUS400 series, 316F stainless steel precision turning parts and lathe parts of various specifications and sizes.
The product on the left is a representative stainless steel turning part produced by our company:
Stainless steel turning parts with threads, steps and milled hexagonal edges are made of SUS303 stainless steel, thread specification M4,
Maximum outer diameter (ie its head diameter): 10mm, total length 38mm
Features: Axial face milling hexagonal, large turning volume, high precision, semi-finished products are completed by automatic lathe + hydraulic milling machine milling hexagonal face + thread rolling machine rolling. This turning part is used in a well-known electrical appliance for fastening and adjustment.
Stainless steel precision casting manufacturer
Stainless steel precision casting is also called investment casting, silica sol process. It is a casting process that requires less cutting of parts or no machining. It is an excellent process technology in the foundry industry, and its application is very wide. Not only is it suitable for casting of various types and alloys, but the dimensional accuracy and surface quality of the produced castings are higher than other casting methods. Complex, high-temperature resistant, difficult-to-process castings can be cast by investment casting.
The price of turning and milling titanium parts
Titanium alloy structural parts (applied to: aerospace, aircraft, ar10, medical, boat) processing difficulties, weak rigidity, etc., structural processing deformation factors. From the aspects of machine tool selection, tool selection, effective cooling, etc., a control method for processing deformation of weakly rigid structural parts is proposed. Titanium alloy materials have excellent properties such as light weight, high strength, and high temperature resistance.
Turning and finishing 6061, 6063, 7075 aluminum alloy parts
This is a small aluminum part like a bowl, which is also turned by an automatic lathe. Its size is very small, the outer diameter is only 6MM, obviously not for eating.
The material grades currently available for aluminum turning parts are: T6 6061, 6063 duralumin, 7075 cutting duralumin, and 5056 ordinary aluminum rod.
By the way, 2021 aluminum rod, a kind of aluminum with relatively low hardness and relatively poor mechanical properties, is generally not recommended for customers to use this material.